. We obtain new calculations of the top weight rational cohomology of the moduli spaces M 2 ,n , equivalently the rational homology of the tropical moduli spaces ∆ 2… Click to show full abstract
. We obtain new calculations of the top weight rational cohomology of the moduli spaces M 2 ,n , equivalently the rational homology of the tropical moduli spaces ∆ 2 ,n , as a representation of S n . These calculations are achieved fully for all n ≤ 10, and partially—for specific irreducible representations of S n —for n ≤ 22. We also present conjectures, verified up to n = 22, for the multiplicities of the irreducible representations std n and std n ⊗ sgn n . We achieve our calculations via a comparison with the homology of compactified configuration spaces of graphs. These homology groups are equipped with commuting actions of a symmetric group and the outer automorphism group of a free group. In this paper, we con-struct an efficient free resolution for these homology representations. Using the Peter-Weyl Theorem for symmetric groups, we consider irreducible representations individually, vastly simplifying the calculation of these homology representations from the free resolution.
               
Click one of the above tabs to view related content.