LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced self-assembly of the 7–12 sequence of amyloid-β peptide by tyrosine bromination

Photo from wikipedia

ABSTRACT Alzheimer’s disease (AD) is a serious neuropathology related to the misfolded assembly state of amyloid-beta (Aβ40 and Aβ42) peptides. It has been demonstrated that protein post-translation modifications (PPTMs) of… Click to show full abstract

ABSTRACT Alzheimer’s disease (AD) is a serious neuropathology related to the misfolded assembly state of amyloid-beta (Aβ40 and Aβ42) peptides. It has been demonstrated that protein post-translation modifications (PPTMs) of the more hydrophilic N-term moiety of the Aβ peptide affect its aggregation kinetics and interaction with the environment. Considering that chlorination and bromination are non-canonical PPTMs found in various metabolic pathways and often correlated to inflammatory responses, halogenation of the Y10 of the Aβ N-term could be a putative in vivo modification with implications in the Aβ peptide aggregation propensity. In this framework, we chose as a model system, a short peptide sequence, DSGYEV (i.e. residues 7–12 of the Aβ N-term) and studied its self-assembly behaviour in comparison to its chlorinated and brominated derivatives. Our results show that Y10 halogenation works as a molecular trigger of the peptide self-assembly in solution, promoting the formation of more structured aggregates. Graphical abstract

Keywords: enhanced self; bromination; self assembly; assembly sequence; self

Journal Title: Supramolecular Chemistry
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.