LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A New Tidy Data Structure to Support Exploration and Modeling of Temporal Data

Photo from wikipedia

Abstract Mining temporal data for information is often inhibited by a multitude of formats: regular or irregular time intervals, point events that need aggregating, multiple observational units or repeated measurements… Click to show full abstract

Abstract Mining temporal data for information is often inhibited by a multitude of formats: regular or irregular time intervals, point events that need aggregating, multiple observational units or repeated measurements on multiple individuals, and heterogeneous data types. This work presents a cohesive and conceptual framework for organizing and manipulating temporal data, which in turn flows into visualization, modeling, and forecasting routines. Tidy data principles are extended to temporal data by: (1) mapping the semantics of a dataset into its physical layout; (2) including an explicitly declared “index” variable representing time; (3) incorporating a “key” comprising single or multiple variables to uniquely identify units over time. This tidy data representation most naturally supports thinking of operations on the data as building blocks, forming part of a “data pipeline” in time-based contexts. A sound data pipeline facilitates a fluent workflow for analyzing temporal data. The infrastructure of tidy temporal data has been implemented in the R package, called tsibble. Supplementary materials for this article are available online.

Keywords: temporal data; data structure; tidy data; time; structure support; new tidy

Journal Title: Journal of Computational and Graphical Statistics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.