LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bayesian Variable Selection for Gaussian Copula Regression Models

Photo by vlado from unsplash

Abstract We develop a novel Bayesian method to select important predictors in regression models with multiple responses of diverse types. A sparse Gaussian copula regression model is used to account… Click to show full abstract

Abstract We develop a novel Bayesian method to select important predictors in regression models with multiple responses of diverse types. A sparse Gaussian copula regression model is used to account for the multivariate dependencies between any combination of discrete and/or continuous responses and their association with a set of predictors. We use the parameter expansion for data augmentation strategy to construct a Markov chain Monte Carlo algorithm for the estimation of the parameters and the latent variables of the model. Based on a centered parameterization of the Gaussian latent variables, we design a fixed-dimensional proposal distribution to update jointly the latent binary vectors of important predictors and the corresponding nonzero regression coefficients. For Gaussian responses and for outcomes that can be modeled as a dependent version of a Gaussian response, this proposal leads to a Metropolis-Hastings step that allows an efficient exploration of the predictors’ model space. The proposed strategy is tested on simulated data and applied to real datasets in which the responses consist of low-intensity counts, binary, ordinal and continuous variables.

Keywords: regression; regression models; bayesian variable; gaussian copula; copula regression

Journal Title: Journal of Computational and Graphical Statistics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.