LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lycopene alleviates oxidative stress-induced cell injury in human vascular endothelial cells by encouraging the SIRT1/Nrf2/HO-1 pathway.

Photo from wikipedia

BACKGROUND AND OBJECTIVE Epidemiological research have displayed that dietary intake rich in lycopene, an antioxidant, is negatively correlated with the risk of cardiovascular disease (CVD). This study aimed to investigate… Click to show full abstract

BACKGROUND AND OBJECTIVE Epidemiological research have displayed that dietary intake rich in lycopene, an antioxidant, is negatively correlated with the risk of cardiovascular disease (CVD). This study aimed to investigate whether the intervention with different concentrations of lycopene could attenuate H2O2-induced oxidative stress injury in human vascular endothelial cells (VECs). METHODS The human VECs HMEC-1 and ECV-304 were incubated with a final concentration of 300 µmol/L H2O2, followed by they were incubated with lycopene at doses of 0.5, 1, or 2 µm. Subsequently, cell proliferation, cytotoxicity, cell adhesion, reactive oxygen species (ROS) contents, adhesion molecule expression, oxidative stress levels, pro-inflammatory factor production, the apoptosis protein levels, and the silent information regulator-1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway protein levels were tested by CCK-8 kit, lactate dehydrogenase (LDH) kit, immunofluorescence labeling, cell surface enzyme immunoassays (EIA), enzyme-linked immunosorbent assay (ELISA), as well as Western blot assays, respectively. RESULTS Under H2O2 stimulation, HMEC-1 and ECV-304 cell proliferation and the SIRT1/Nrf2/HO-1 pathway protein expression were significantly reduced, whereas cytotoxicity, apoptosis, cell adhesion molecule expression, pro-inflammatory and oxidative stress factors production were apparently encouraged, which were partially countered by lycopene intervention in a dose-dependent manner. CONCLUSION Lycopene alleviates H2O2-induced oxidative damage in human VECs by reducing intracellular ROS levels, inflammatory factor production, cell adhesiveness, and apoptosis rate under oxidative stress conditions through activation of the SIRT1/Nrf2/HO-1 pathway.

Keywords: cell; sirt1 nrf2; oxidative stress; nrf2 pathway; lycopene

Journal Title: Clinical and experimental hypertension
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.