LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Formation of artifactual DMPO-OH spin adduct in acid solutions containing nitrite ions

Photo by introspectivedsgn from unsplash

Abstract We investigated aqueous solutions containing nitrite ions and DMPO (5,5-dimethyl-1-pyrroline-N-oxide) by electron spin resonance (ESR) in the pH range from 1 to 6. A DMPO-OH signal was observed below… Click to show full abstract

Abstract We investigated aqueous solutions containing nitrite ions and DMPO (5,5-dimethyl-1-pyrroline-N-oxide) by electron spin resonance (ESR) in the pH range from 1 to 6. A DMPO-OH signal was observed below pH 3.0 in the presence of nitrite ions, whereas in the absence of nitrite ion, an extremely weak signal was observed below pH 1.5. Addition of methanol, a hydroxyl radical scavenger, to this system did not lead to the appearance of a detectable DMPO-CH2OH signal. The possibility of this DMPO-OH signal being due to a genuine spin trapping process with hydroxyl radical was, therefore, ruled out. The reactivities of reactive nitrogen species (RNS) in this system with DMPO have also been investigated by density functional theory (DFT) at the IEFPCM (water)/B3LYP/6–311 + G ** level of theory. On the basis of the pH dependence of the signal intensity and the redox potential E° (versus SHE) calculated by DFT theory, we propose that the origin of this signal is “inverted spin trapping” via one-electron oxidation of DMPO by H2ONO+, followed by the nucleophilic addition of water. Prevention of these false-positive results when detecting hydroxyl radical using ESR spin trapping requires an awareness of both the presence of nitrite ions in the solution and the solution pH.

Keywords: nitrite ions; solutions containing; signal; dmpo; containing nitrite; spin

Journal Title: Free Radical Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.