LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Differential levels of reactive oxygen species in murine preadipocyte 3T3-L1 cells cultured on type I collagen molecule-coated and gel-covered dishes exert opposite effects on NF-κB-mediated proliferation and migration

Photo by nci from unsplash

Abstract Reactive oxygen species (ROS) participate in various cell responses in association with cell proliferation, migration, differentiation, and death. Extracellular matrix (ECM) serves as cellular microenvironments for many kinds of… Click to show full abstract

Abstract Reactive oxygen species (ROS) participate in various cell responses in association with cell proliferation, migration, differentiation, and death. Extracellular matrix (ECM) serves as cellular microenvironments for many kinds of cells, affecting cell activities. However, whether or not ECM influences cellular ROS levels has not been well studied. In this study, cells are cultured on collagen I molecule-coated (mol. coated) dishes and collagen I fibrous gel-covered (gel) dishes to explore their influence on cell behaviours. We found that the levels of ROS in murine 3T3-L1 preadipocytes increased both in cells on mol. coated and those on the gel. Much higher ROS levels were found in the cells cultured on the gel. Cell proliferation and migration were stimulated to opposite directions between the cells on mol. coated and the cells on gel. ROS in a moderate level were positive regulators in the proliferation and migration of cells on mol. coated; however, ROS in a high level served as negative regulators in the cells on gel. These opposite effects on cell proliferation and migration affected by different ROS levels are in parallel with opposite levels of NF-κB p65 activation.

Keywords: proliferation migration; cells cultured; migration; gel; cell

Journal Title: Free Radical Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.