LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pullulan based derivatives: synthesis, enhanced physicochemical properties, and applications

Photo by techdailyca from unsplash

Abstract Drug distribution relies heavily on polymers, which also offer a variety of benefits like controlled release, targeted release, prolonged release, etc. Due to their low toxicity and great safety,… Click to show full abstract

Abstract Drug distribution relies heavily on polymers, which also offer a variety of benefits like controlled release, targeted release, prolonged release, etc. Due to their low toxicity and great safety, biodegradable polymers are highly preferred. The exopolysaccharide known as pullulan is generated from a fungus known as Aureobasidium pullulan. It has many different qualities, including biodegradability, appropriate adhesion, antioxidant, film-forming capacity, blood compatibility, mucosal adhesion, etc. However, its application in the pharmaceutical industry is restricted by its insolubility in organic solvents, mechanical characteristics, and lack of macromolecule-carrying ability groups. This review provides an overview of the modifications made to pullulan, including periodate oxidation, etherification, esterification, sulfation, urethane derivatization, PEG incorporation, and cationization, to enhance its solubility in organic solvents, mechanical properties, pH sensitivity, drug delivery, anticoagulant, and antimicrobial properties. Pullulan has nine active hydroxyl groups in its structure that react chemically that can be used for physicochemical modification to produce pullulan derivatives. A key area of pullulan research has been pullulan modification, which has demonstrated enhanced solubility, pH-sensitive targeting, broadened horizons for delivery systems, anticoagulation, and antibacterial properties.

Keywords: derivatives synthesis; based derivatives; pullulan; synthesis enhanced; enhanced physicochemical; pullulan based

Journal Title: Drug Delivery
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.