Abstract Sorafenib (SRF) presents undesirable effects in clinical treatment, due to the lack of targeting, poor water solubility, and obvious side effects. In this study, we constructed a novel nanodrug… Click to show full abstract
Abstract Sorafenib (SRF) presents undesirable effects in clinical treatment, due to the lack of targeting, poor water solubility, and obvious side effects. In this study, we constructed a novel nanodrug carrier system for accurate and efficient delivery of SRF, improving its therapeutic effects and achieving tumor-specific imaging. The hollow mesoporous MnO2 (H-MnO2) nanoparticles equipped with target substance aptamers (APT) on the surface were used to load SRF for the first time. The resulting H-MnO2-SRF-APT could specifically bound to glypican-3 (GPC3) receptors on the surface of hepatocellular carcinoma (HCC), rapidly undergoing subsequent degradation under decreased pH conditions in the tumor microenvironment (TME) and releasing the loaded SRF. In this process, Mn2+ ions were used for T1-weighted magnetic resonance imaging simultaneously. The in vitro cell experiments indicated that H-MnO2-SRF-APT showed much more effects on the inhibition in the proliferation of Huh7 and HepG2 HCC cells than that of the non-targeted H-MnO2-SRF and free SRF. Besides, the in vivo results further confirmed that H-MnO2-SRF-APT could effectively inhibit the growth of xenograft tumors Huh7 in the naked mouse with good biosafety. In conclusion, H-MnO2-SRF-APT could significantly enhance the therapeutic effect of SRF and is expected to be a new way of diagnosis and treatment of HCC.
               
Click one of the above tabs to view related content.