LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Using chemical chaperones to increase recombinant human erythropoietin secretion in CHO cell line

Photo from wikipedia

Abstract In recombinant protein production, over-expressed genes induce unfolded protein response (UPR), overloaded protein aggregation in endoplasmic reticulum and its expansion. In this study, we have used 16 chemicals to… Click to show full abstract

Abstract In recombinant protein production, over-expressed genes induce unfolded protein response (UPR), overloaded protein aggregation in endoplasmic reticulum and its expansion. In this study, we have used 16 chemicals to improve erythropoietin production in engineered CHO cells and tried to study the mechanism of reducing protein aggregation in each treatment. Endoplasmic reticulum expansion was studied through endoplasmic reticulum specific labeling with utilizing fluorescent glibenclamide and its molecular chaperones expression were studied by real-time polymerase chain reaction. The increase in the mRNA level of EPO and endoplasmic reticulum chaperones GRP78/BiP, XBP1, ATF6, and ATF4 in different chemical treatments were not related to ER expansion. On the other hand, ER expansion in beta alanine, beta cyclodextrin and taurine treatments resulted in increased EPO secretion. Dramatically increase in EPO expression in conjugated linoleic acid, spermidine, trehalose, and maltose (19, 20, 16, and 19-fold, respectively) did not increase erythropoietin productivity, but betaine which did not caused ER expansion, with minor increase in EPO gene expression increase EPO productivity. The results indicated that betaine increase EPO secretion in engineered CHO cell line without relation to ER expansion and molecular chaperones expression.

Keywords: erythropoietin; secretion; endoplasmic reticulum; expansion; increase; increase epo

Journal Title: Preparative Biochemistry and Biotechnology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.