LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Piperine fast disintegrating tablets comprising sustained-release matrix pellets with enhanced bioavailability: formulation, in vitro and in vivo evaluation

Photo from wikipedia

Abstract Piperine (Pip) has been widely studied for its multiple activities such as antidepressant, anti-epileptic, and so forth. However, the poor water solubility coupled with low bioavailability may inevitably hinder… Click to show full abstract

Abstract Piperine (Pip) has been widely studied for its multiple activities such as antidepressant, anti-epileptic, and so forth. However, the poor water solubility coupled with low bioavailability may inevitably hinder the application of Pip in the clinical setting. In this study, a formulation strategy was proposed to spontaneously resolve the low bioavailability and dose dividing issue of Pip. The matrix pellets (Pip-SR-pellets) consisting of Pip solid dispersion (Pip-SD) and hydroxypropylmethyl cellulose-K100 were developed to achieve an increased and sustained release profile in vitro. The Pip-SR-pellets were compacted into fast disintegrating tablets (FDTs) with a blend of excipients comprising lactose, MCC, LS-HPC, and CMS-Na. The Pip-SD was characterized by solubility study and XRD. The evaluation of the cross-sectional morphology of the Pip-FDTs via scanning electron microscope proved that Pip-SR-pellets maintained its structural integrity during compression and were uniformly distributed in the Pip-FDTs. The release profile of Pip-SR-pellets was highly consistent with the Pip-FDTs. In vivo pharmacokinetics study demonstrated that the relative bioavailability of Pip-SR-pellets was approximately 2.70-fold higher than that of the pure drug, and 1.62-fold compared with that of Pip-SD. This work therefore showed a potential industrialized method could be applied to formulate poorly water-soluble drug that has dose-dividing requirement.

Keywords: bioavailability; matrix pellets; pip pellets; sustained release; pip

Journal Title: Pharmaceutical Development and Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.