LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hexagonal liquid crystalline system containing cinnamaldehyde for enhancement of skin permeation of sinomenine hydrochloride

Photo by curology from unsplash

Abstract Sinomenine hydrochloride (SH) is usually applied to treat rheumatoid arthritis (RA) with severe side effects due to oral administration. Cinnamaldehyde (CA) as essential oil possesses an anti-RA effect and… Click to show full abstract

Abstract Sinomenine hydrochloride (SH) is usually applied to treat rheumatoid arthritis (RA) with severe side effects due to oral administration. Cinnamaldehyde (CA) as essential oil possesses an anti-RA effect and can facilitate transdermal penetration. Hence, this study developed hexagonal liquid crystalline (HII) gels to deliver two components (SH and CA) across the skins. HII gels were prepared and characterized by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS) and rheology. Moreover, in vitro drug release behavior and ex vivo skin permeation were investigated. Finally, Fourier transforms infrared spectral analysis (FTIR) and confocal laser scanning microscopy (CLSM) were used to explore the skin penetration mechanism. PLM and SAXS showed that the inner structure of the gels was HII phase. The addition of lipophilic or hydrophilic molecules slowed down one another’s release and the release model was dominated by Fickian diffusion (n < 0.43). Furthermore, in vitro permeation studies indicated that appropriate CA could improve the skin permeability of SH. FTIR and CLSM suggested that infiltration occurred due to disruption of the lipid bilayer structure and increased fluidity of the skin. In conclusion, HII gels and CA exhibited a penetration-promoting effect for transdermal applications in SH.

Keywords: skin permeation; microscopy; sinomenine hydrochloride; permeation; liquid crystalline; hexagonal liquid

Journal Title: Pharmaceutical Development and Technology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.