Abstract Near Infrared and Raman spectroscopy-based Process Analytical Technology tools were used for monitoring blend uniformity (BU) and content uniformity (CU) for solid oral formulations. A quantitative Partial Least Square… Click to show full abstract
Abstract Near Infrared and Raman spectroscopy-based Process Analytical Technology tools were used for monitoring blend uniformity (BU) and content uniformity (CU) for solid oral formulations. A quantitative Partial Least Square model was developed to monitor BU as real-time release testing at a commercial scale. The model having the R 2, and root mean square error of 0.9724 and 2.2047, respectively can predict the target concentration of 100% with a 95% confidence interval of 101.85–102.68% even after one year. The tablets from the same blends were investigated for CU using NIR and Raman techniques both in reflection and transmission mode. Raman reflection technique was found to be the best and the PLS model was developed using tablets compressed at different concentrations, hardness, and speed. The model with R 2 and RMSE of 0.9766 and 1.9259, respectively was used for the quantification of CU. Both the BU and CU models were validated for accuracy, precision, specificity, linearity, and robustness. The accuracy was proved against the HPLC method with a relative standard deviation of less than 3%. The equivalency for BU by NIR and CU by Raman was evaluated using Schuirmann’s Two One-sided tests and found equivalent to HPLC within a 2% acceptable limit. Graphical Abstract
               
Click one of the above tabs to view related content.