LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Inoculation of 1-aminocyclopropane-1-carboxylate deaminase–producing bacteria along with biosurfactant application enhances the phytoremediation efficiency of Medicago sativa in hydrocarbon-contaminated soils

Photo from wikipedia

ABSTRACT Phytoremediation efficiency of Alfa alfa (Medicago sativa) was evaluated in hydrocarbon-contaminated soil with the combined application of 1-aminocyclopropane-1-carboxylate (ACC) deaminase–producing Bacillus sp. PVMX4 and an isolated biosurfactant from this… Click to show full abstract

ABSTRACT Phytoremediation efficiency of Alfa alfa (Medicago sativa) was evaluated in hydrocarbon-contaminated soil with the combined application of 1-aminocyclopropane-1-carboxylate (ACC) deaminase–producing Bacillus sp. PVMX4 and an isolated biosurfactant from this strain. Results on the plant growth–promoting (PGP) traits of Bacillus sp. PVMX4 revealed that phosphate (P) solubilization, indole-3-acetic acid (IAA) production, and ACC deaminase activity were not affected by low-concentration hydrocarbon amendment in the form of crude oil. Bacillus sp. PVMX4 was able to utilize crude oil as a sole carbon source in mineral salt medium (MSM), and this strain synthesized significant quantities of biosurfactant in growth medium quantified by an emulsification index of 69.2 EI24% and surface tension reduction of 26.2 mN/m at the end of the experimental period. Biosurfactant, when partially purified and characterized by thin-layer chromatography (TLC) and Fourier transform infrared spectroscopy (FT-IR), revealed it to be a lipopeptide-type biosurfactant. Pilot-scale phytoremediation studies conducted under growth chamber conditions in hydrocarbon-contaminated soil using Medicago sativa along with combined application of ACC deaminase–containing bacteria and biosurfactant recorded 76.4% hydrocarbon degradation.

Keywords: medicago sativa; hydrocarbon; application; hydrocarbon contaminated; phytoremediation; deaminase

Journal Title: Bioremediation Journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.