ABSTRACT Formation of gas hydrates is one of the problems in the production, processing, and transportation of natural gas. Hence, an understanding of conditions where hydrates form is necessary to… Click to show full abstract
ABSTRACT Formation of gas hydrates is one of the problems in the production, processing, and transportation of natural gas. Hence, an understanding of conditions where hydrates form is necessary to overcome hydrate-related issues. The aim of this study was to develop an effective relation between the methane hydrate formation pressure based on the temperature, weight fraction of inhibitor, and molecular weight of inhibitor using the least square support vector machine. This computational model indicates the great ability of predictions for determining hydrate pressure in the presence of different inhibitors such as the methanol, ethylene glycol, diethylene glycol, and triethylene glycol. The values of R-squared (R2) and mean squared error obtained for this model are 0.9925 and 0.2325, respectively. This developed predictive tool can be applied as an accurate estimation of methane hydrate formation pressure.
               
Click one of the above tabs to view related content.