The scattering problem of seismic waves is an important issue for studying earthquake engineering. In this paper, the null-field boundary integral equation approach was used in conjunction with degenerate kernels… Click to show full abstract
The scattering problem of seismic waves is an important issue for studying earthquake engineering. In this paper, the null-field boundary integral equation approach was used in conjunction with degenerate kernels and eigenfunction expansion to solve the SH-wave scattering problem of a circular or an elliptical-arc hill. The original problem is divided into subdomains by taking a free-body diagram. One region is an interior boundary value problem. The other is a canyon scattering problem. For the boundary value problem, not only a simply connected domain (elliptical-arc hill problem) but also a doubly connected domain (a circular-arc hill problem containing a circular tunnel or a circular inclusion) is considered. The canyon scattering problem may be addressed in an infinite domain with an artificial boundary of a full plane such that the degenerate kernel can be fully utilized. The null-field integral equation method is used to match boundary conditions. Numerical results are compared favorably with the available data.
               
Click one of the above tabs to view related content.