LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Classifying natural-language spatial relation terms with random forest algorithm

Photo by erol from unsplash

ABSTRACT The exponential growth of natural language text data in social media has contributed a rich data source for geographic information. However, incorporating such data source for GIS analysis faces… Click to show full abstract

ABSTRACT The exponential growth of natural language text data in social media has contributed a rich data source for geographic information. However, incorporating such data source for GIS analysis faces tremendous challenges as existing GIS data tend to be geometry based while natural language text data tend to rely on natural language spatial relation (NLSR) terms. To alleviate this problem, one critical step is to translate geometric configurations into NLSR terms, but existing methods to date (e.g. mean value or decision tree algorithm) are insufficient to obtain a precise translation. This study addresses this issue by adopting the random forest (RF) algorithm to automatically learn a robust mapping model from a large number of samples and to evaluate the importance of each variable for each NLSR term. Because the semantic similarity of the collected terms reduces the classification accuracy, different grouping schemes of NLSR terms are used, with their influences on classification results being evaluated. The experiment results demonstrate that the learned model can accurately transform geometric configurations into NLSR terms, and that recognizing different groups of terms require different sets of variables. More importantly, the results of variable importance evaluation indicate that the importance of topology types determined by the 9-intersection model is weaker than metric variables in defining NLSR terms, which contrasts to the assertion of ‘topology matters, metric refines’ in existing studies.

Keywords: natural language; topology; nlsr terms; language spatial; language; spatial relation

Journal Title: International Journal of Geographical Information Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.