LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling urban expansion by using variable weights logistic cellular automata: a case study of Nanjing, China

Photo from wikipedia

ABSTRACT Simulation models based on cellular automata (CA) are widely used for understanding and simulating complex urban expansion process. Among these models, logistic CA (LCA) is commonly adopted. However, the… Click to show full abstract

ABSTRACT Simulation models based on cellular automata (CA) are widely used for understanding and simulating complex urban expansion process. Among these models, logistic CA (LCA) is commonly adopted. However, the performance of LCA models is often limited because the fixed coefficients obtained from binary logistic regression do not reflect the spatiotemporal heterogeneity of transition rules. Therefore, we propose a variable weights LCA (VW-LCA) model with dynamic transition rules. The regression coefficients in this VW-LCA model are based on VW by incorporating a genetic algorithm in a conventional LCA. The VW-LCA model and the conventional LCA model were both used to simulate urban expansion in Nanjing, China. The models were calibrated with data for the period 2000–2007 and validated for the period 2007–2013. The results showed that the VW-LCA model performed better than the LCA model in terms of both visual inspection and key indicators. For example, kappa, accuracy of urban land and figure of merit for the simulation results of 2013 increased by 3.26%, 2.96% and 4.44%, respectively. The VW-LCA model performs relatively better compared with other improved LCA models that are suggested in literature.

Keywords: variable weights; urban expansion; model; cellular automata; lca model

Journal Title: International Journal of Geographical Information Science
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.