ABSTRACT The increasing popularity of Location-Based Social Networks (LBSNs) and the semantic enrichment of mobility data in several contexts in the last years has led to the generation of large… Click to show full abstract
ABSTRACT The increasing popularity of Location-Based Social Networks (LBSNs) and the semantic enrichment of mobility data in several contexts in the last years has led to the generation of large volumes of trajectory data. In contrast to GPS-based trajectories, LBSN and context-aware trajectories are more complex data, having several semantic textual dimensions besides space and time, which may reveal interesting mobility patterns. For instance, people may visit different places or perform different activities depending on the weather conditions. These new semantically rich data, known as multiple-aspect trajectories, pose new challenges in trajectory classification, which is the problem that we address in this paper. Existing methods for trajectory classification cannot deal with the complexity of heterogeneous data dimensions or the sequential aspect that characterizes movement. In this paper we propose MARC, an approach based on attribute embedding and Recurrent Neural Networks (RNNs) for classifying multiple-aspect trajectories, that tackles all trajectory properties: space, time, semantics, and sequence. We highlight that MARC exhibits good performance especially when trajectories are described by several textual/categorical attributes. Experiments performed over four publicly available datasets considering the Trajectory-User Linking (TUL) problem show that MARC outperformed all competitors, with respect to accuracy, precision, recall, and F1-score.
               
Click one of the above tabs to view related content.