Abstract Spatial heterogeneity refers to uneven distributions of geographical variables. Spatial interpolation methods that utilize spatial heterogeneity are sensitive to the way in which spatial heterogeneity is characterized. This study… Click to show full abstract
Abstract Spatial heterogeneity refers to uneven distributions of geographical variables. Spatial interpolation methods that utilize spatial heterogeneity are sensitive to the way in which spatial heterogeneity is characterized. This study developed a Generalized Heterogeneity Model (GHM) for characterizing local and stratified heterogeneity within variables and to improve interpolation accuracy. GHM first divides a study area into multiple spatial strata according to the sample values and locations of a variable. Then, GHM estimates simultaneously the spatial variations of the variable within and between the spatial strata. Finally, GHM interpolates unbiased estimates and uncertainty at unsampled locations. We demonstrated the GHM by predicting the spatial distributions of marine chlorophyll in Townsville, Queensland, Australia. Results show that GHM improved both the overall interpolation accuracy across the study area and along strata boundaries compared with previous interpolation models. GHM also avoided bull’s eye patterns and abrupt changes along strata boundaries. In future studies, GHM has the potential to be integrated with machine learning and advanced algorithms to improve spatial prediction accuracy for studies in broader fields.
               
Click one of the above tabs to view related content.