LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Altered VDAC-HK association and apoptosis in mouse peripheral blood lymphocytes exposed to diabetic condition: an in vitro and in vivo study.

Photo from wikipedia

Increased apoptotic lymphocytes have been correlated to a high incidence of infection in poorly controlled diabetes. This study aimed to determine whether altered voltage-dependent anion channel (VDAC)-hexokinase (HK) association contributes… Click to show full abstract

Increased apoptotic lymphocytes have been correlated to a high incidence of infection in poorly controlled diabetes. This study aimed to determine whether altered voltage-dependent anion channel (VDAC)-hexokinase (HK) association contributes to the increase in apoptosis. Mouse peripheral blood lymphocytes (PBL) exposed to high glucose (Glc)/palmitic acid (PA) were used as the in vitro model, which was compared with PBL isolated from alloxan-induced diabetic mice (in vivo model). Our results showed a significant increase in apoptosis as indicated by the apoptotic index, caspase-3 activity, mitochondrial membrane potential and ultrastructural study. HK and glucose-6-phosphate dehydrogenase (G6PDH) activities were markedly reduced with a profound increase in glucose-6-phosphate level. Co-immunoprecipitation confirms HK interaction with VDAC, an outer mitochondrial membrane protein. Inhibited glycolytic enzyme, i.e. HK and reduced HK-VDAC interaction in our study could contribute to increased apoptosis in lymphocytes exposed to high Glc/PA. Targeting HK-VDAC interaction may therefore provide therapeutic potential for the treatment of diabetes-associated infection.

Keywords: apoptosis; study; blood lymphocytes; peripheral blood; apoptosis mouse; mouse peripheral

Journal Title: Archives of physiology and biochemistry
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.