Starting from the Lax pairs, the nonlocal symmetries of the coupled variable-coefficient Newell-Whitehead system are obtained. By introducing an appropriate auxiliary dependent variable, the nonlocal symmetries are localized to Lie… Click to show full abstract
Starting from the Lax pairs, the nonlocal symmetries of the coupled variable-coefficient Newell-Whitehead system are obtained. By introducing an appropriate auxiliary dependent variable, the nonlocal symmetries are localized to Lie point symmetries and the coupled variable-coefficient Newell-Whitehead system is extended to an enlarged system with the auxiliary variable. Then the finite symmetry transformation for the prolonged system is found by solving the initial-value problems. Furthermore, by applying symmetry reduction method to the enlarged system, two kinds of the group invariant solutions are given.
               
Click one of the above tabs to view related content.