Abstract Objectives Gout is an inflammatory arthropathy caused by the deposition of monosodium urate (MSU). The synthesis and release of IL-1β is crucial for MSU-induced synovial inflammation. The aim of… Click to show full abstract
Abstract Objectives Gout is an inflammatory arthropathy caused by the deposition of monosodium urate (MSU). The synthesis and release of IL-1β is crucial for MSU-induced synovial inflammation. The aim of the present study was to investigate the mechanism of MSU crystal-induced autoinflammatory processes. Methods In vitro studies were used to evaluate the role of IL-6 in inflammasome activation in human neutrophils cultured with MSU crystals. Human neutrophils were stimulated with MSU in the presence or absence of IL-6 priming to determine NLRP3 inflammasome activation and subsequent cleaved caspase-1 induction or IL-1β production. Results IL-6 or MSU stimulation alone did not result in the efficient IL-1β production from human neutrophils. However, MSU stimulation induced marked IL-1β production from IL-6-primed neutrophils. Pretreatment with baricitinib, which blocks IL-6 receptor signaling, prevented MSU-induced cleaved caspase-1 or IL-1β induction in IL-6-primed neutrophils. Tocilizumab pretreatment also inhibited MSU-mediated IL-1β production from IL-6-primed neutrophils. Conclusion Priming of human neutrophils with IL-6 promotes uric acid-mediated IL-1β secretion in the absence of microbial stimulation. These results suggest that an endogenous cytokine, IL-6, is involved in MSU-mediated NLRP3 inflammasome activation and subsequent IL-1β production from innate immune cells and has a crucial role in MSU crystal-induced synovial inflammation. These findings provide insights into uric acid-mediated autoinflammation in the innate immune system.
               
Click one of the above tabs to view related content.