This work contributed an analytical quasistatic solution to the problem of an infinite viscoelastic plate supported on a Pasternak foundation and subjected to axisymmetric normal loading. The derivation was based… Click to show full abstract
This work contributed an analytical quasistatic solution to the problem of an infinite viscoelastic plate supported on a Pasternak foundation and subjected to axisymmetric normal loading. The derivation was based on defining a set of iterative functions, each containing information on the plate’s relaxation modulus and on the time-variation of the loading. By writing the sought solution as a linear combination of these functions it was shown how to decompose the original viscoelastic problem into a set of independent elastic plate problems for which analytical solutions exist. Thus, the plate’s deflection evolution at any point of interest was provided in closed-form, without resorting to integral transform techniques. The formulation was applied and subsequently validated for several test cases, demonstrating that a very small set of elastic solutions is needed for generating a highly accurate viscoelastic result. Overall, the proposed solution is deemed well suited for engineering calculations, as a computational kernel for backcalculation, and for benchmarking numerical solutions.
               
Click one of the above tabs to view related content.