LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-scale interactions in a compressible boundary layer

Photo from wikipedia

ABSTRACT The properties of spectral subranges of scales in a boundary layer at Mach=2.3 and friction Reynolds number Reτ = 570 are investigated by analysing DNS data. One major aim… Click to show full abstract

ABSTRACT The properties of spectral subranges of scales in a boundary layer at Mach=2.3 and friction Reynolds number Reτ = 570 are investigated by analysing DNS data. One major aim is to examine whether footprinting and modulation of small-scale near-wall motions by outer large structures, observed at high Reynolds numbers, also pertain to this low-Reynolds-number case, or whether the logarithmic layer simply contains a continuous hierarchy of motions without specific outer scales playing a distinctive role. To this end, the spectrum of scales is decomposed into modes by application of the “Empirical Mode Decomposition”. The properties of different scales are then investigated by means of spectra, maps of isotropy/anisotropy parameters, the premultiplied derivative of the second-order structure function, correlation coefficients and joint probability density function (PDF), the last constructed from conditionally sampled data for the small-scale motions within the large-scale footprints. A clear commonality is identified between interactions in high-Reynolds-number channel flow and the present low-Reynolds-number boundary layer.

Keywords: layer; reynolds number; boundary layer; multi scale; scale interactions

Journal Title: Journal of Turbulence
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.