LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

π-Electron systems containing Si=Si double bonds

Photo from wikipedia

Abstract Sterically large substituents can provide kinetic stabilization to various types of low-coordinate compounds. For example, regarding the chemistry of the group 14 elements, since West et al. introduced the… Click to show full abstract

Abstract Sterically large substituents can provide kinetic stabilization to various types of low-coordinate compounds. For example, regarding the chemistry of the group 14 elements, since West et al. introduced the concept of kinetic protection of the otherwise highly reactive Si=Si double bond by bulky mesityl (2,4,6-trimethylphenyl) groups in 1981, a number of unsaturated compounds of silicon and its group homologs have been successfully isolated by steric effects using the appropriate large substituents. However, the functions and applications of the Si–Si π-bonds consisting of the 3pπ electrons on the formally sp 2-hybridized silicon atoms have rarely been explored until 10 years ago, when Scheschkewitz and Tamao independently reported the model systems of the oligo(p-phenylenedisilenylene)s (Si–OPVs) in 2007. This review focuses on the recent advances in the chemistry of π-electron systems containing Si=Si double bonds, mainly published in the last decade. The synthesis, characterization, and potential application of a variety of donor-free π-conjugated disilene compounds are described.

Keywords: electron systems; containing double; chemistry; double bonds; systems containing

Journal Title: Science and Technology of Advanced Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.