LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Solvation of quantum dots in 1-alkyl-1-methylpyrrolidinium ionic liquids: toward stably luminescent composites

Photo from wikipedia

ABSTRACT CdTe nanoparticles capped with a cationic thiolate ligand were stably dispersed in ionic liquids, 1-alkyl-1-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)amides with an alkyl group of n-propyl, butyl and octyl-chain, and in an ionic… Click to show full abstract

ABSTRACT CdTe nanoparticles capped with a cationic thiolate ligand were stably dispersed in ionic liquids, 1-alkyl-1-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)amides with an alkyl group of n-propyl, butyl and octyl-chain, and in an ionic plastic crystal, 1-ethyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide. Dispersion behavior of CdTe nanoparticles in these ionic media was evaluated, in which the solvation of nanoparticles by the ionic components was particularly interested. The ionic media showed alkyl-chain length-dependent solvation behavior, which was suggested by the thermal analysis of nanocomposites. The longer alkyl-chains led to the greater decrease in the thermal melting enthalpy of ionic media with the introduction of nanoparticles. The ionic liquid with an octyl-chain, which is considered to form a thicker solvation layer, afforded better emission durability of CdTe nanoparticles compared to the ionic liquid with a shorter alkyl chain. Graphical Abstract

Keywords: chain; solvation; nanoparticles ionic; methylpyrrolidinium; cdte nanoparticles; ionic liquids

Journal Title: Science and Technology of Advanced Materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.