This paper studies the optimal investment strategies under the dynamic elasticity of variance (DEV) model which maximize the expected utility of terminal wealth. The DEV model is an extension of… Click to show full abstract
This paper studies the optimal investment strategies under the dynamic elasticity of variance (DEV) model which maximize the expected utility of terminal wealth. The DEV model is an extension of the constant elasticity of variance model, in which the volatility term is a power function of stock prices with the power being a nonparametric time function. It is not possible to find the explicit solution to the utility maximization problem under the DEV model. In this paper, a dual-control Monte-Carlo method is developed to compute the optimal investment strategies for a variety of utility functions, including power, non-hyperbolic absolute risk aversion and symmetric asymptotic hyperbolic absolute risk aversion utilities. Numerical examples show that this dual-control Monte-Carlo method is quite efficient.
               
Click one of the above tabs to view related content.