LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of human S-adenosyl-homocysteine hydrolase in vitro and identification of its potential inhibitors

Photo from wikipedia

Abstract Human S-adenosyl-homocysteine hydrolase (SAHH, E.C.3.3.1.1) has been considered to be an attractive target for the design of medicines to treat human disease, because of its important role in regulating… Click to show full abstract

Abstract Human S-adenosyl-homocysteine hydrolase (SAHH, E.C.3.3.1.1) has been considered to be an attractive target for the design of medicines to treat human disease, because of its important role in regulating biological methylation reactions to catalyse the reversible hydrolysis of S-adenosylhomocysteine (SAH) to adenosine (Ado) and l-homocysteine (Hcy). In this study, SAHH protein was successfully cloned and purified with optimized, Pichia pastoris (P. pastoris) expression system. The biological activity results revealed that, among the tested compounds screened by ChemMapper and SciFinder Scholar, 4-(3-hydroxyprop-1-en-1-yl)-2-methoxyphenol (coniferyl alcohol, CAS: 458-35-5, ZINC: 12359045) exhibited the highest inhibition against rSAHH (IC50= 34 nM). Molecular docking studies showed that coniferyl alcohol was well docked into the active cavity of SAHH. And several H-bonds formed between them, which stabilized coniferyl alcohol in the active site of rSAHH with a proper conformation.

Keywords: homocysteine; human adenosyl; adenosyl homocysteine; homocysteine hydrolase

Journal Title: Journal of Enzyme Inhibition and Medicinal Chemistry
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.