LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design and synthesis of benzodiazepines as brain penetrating PARP-1 inhibitors

Photo from wikipedia

Abstract The poly (ADP-ribose) polymerase (PARP) inhibitors play a crucial role in cancer therapy. However, most approved PARP inhibitors cannot cross the blood-brain barrier, thus limiting their application in the… Click to show full abstract

Abstract The poly (ADP-ribose) polymerase (PARP) inhibitors play a crucial role in cancer therapy. However, most approved PARP inhibitors cannot cross the blood-brain barrier, thus limiting their application in the central nervous system. Here, 55 benzodiazepines were designed and synthesised to screen brain penetrating PARP-1 inhibitors. All target compounds were evaluated for their PARP-1 inhibition activity, and compounds with better activity were selected for further assays in vitro. Among them, compounds H34, H42, H48, and H52 displayed acceptable inhibition effects on breast cancer cells. Also, computational prediction together with the permeability assays in vitro and in vivo proved that the benzodiazepine PARP-1 inhibitors we synthesised were brain permeable. Compound H52 exhibited a B/P ratio of 40 times higher than that of Rucaparib and would be selected to develop its potential use in neurodegenerative diseases. Our study provided potential lead compounds and design strategies for the development of brain penetrating PARP-1 inhibitors. HIGHLIGHTS Structural fusion was used to screen brain penetrating PARP-1 inhibitors. 55 benzodiazepines were evaluated for their PARP-1 inhibition activity. Four compounds displayed acceptable inhibition effects on breast cancer cells. The benzodiazepine PARP-1 inhibitors were proved to be brain permeable.

Keywords: brain; inhibition; brain penetrating; penetrating parp; design synthesis; parp inhibitors

Journal Title: Journal of Enzyme Inhibition and Medicinal Chemistry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.