LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Automatic detection of passing and shooting in water polo using machine learning: a feasibility study.

Photo from wikipedia

There is currently no efficient way to quantify overhead throwing volume in water polo. Therefore, this study aimed to test the feasibility of a method to detect passes and shots… Click to show full abstract

There is currently no efficient way to quantify overhead throwing volume in water polo. Therefore, this study aimed to test the feasibility of a method to detect passes and shots in water polo automatically using inertial measurement units (IMU) and machine-learning algorithms. Eight water polo players wore one IMU sensor on the wrist (dominant hand) and one on the sacrum during six practices each. Sessions were filmed with a video camera and manually tagged for individual shots or passes. Data were synchronised between video tagging and IMU sensors using a cross-correlation approach. Support vector machine (SVM) and artificial neural networks (ANN) were compared based on sensitivity and specificity for identifying shots and passes. A total of 7294 actions were identified during the training sessions, including 945 shots and 5361 passes. Using SVM, passes and shots together were identified with 94.4% (95%CI = 91.8-96.4) sensitivity and 93.6% (95%CI = 91.4-95.4) specificity. Using ANN yielded similar sensitivity (93.0% [95%CI = 90.1-95.1]) and specificity (93.4% [95%CI = 91.1 = 95.2]). The results suggest that this method of identifying overhead throwing motions with IMU has potential for future field applications. A set-up with one single sensor at the wrist can suffice to measure these activities in water polo.

Keywords: water; machine learning; study; water polo

Journal Title: Sports biomechanics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.