LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design, molecular docking study of synthesised N-heteroaryl substituted gallamide derivatives and their antibacterial assessment

Photo from wikipedia

Abstract A series of N-heteroaryl substituted Gallamide derivatives 3a-3g were synthesised and the obtained structures were further confirmed by different spectral studies. For in-vitro antibacterial activity, the synthesised compounds were… Click to show full abstract

Abstract A series of N-heteroaryl substituted Gallamide derivatives 3a-3g were synthesised and the obtained structures were further confirmed by different spectral studies. For in-vitro antibacterial activity, the synthesised compounds were evaluated against three UTI (Urinary Tract Infection) bacterial strains including Staphylococcus aureus, Escherichia coli, and Streptococcus pyogenes. Furthermore, the designed compounds were docked with bacterial DNA gyrase and dihydropteroate synthase. All the compounds had shown good inhibition against S. aureus whereas compound 3e has produced significant inhibition at 28 and 26 mm against S.aureus and E.coli, respectively. The MIC value of the conjugate 3e and 3d was 3.12 and 6.25 μg/mL against S. aureus andE.coli, respectively. Compound 3,4,5-trihydroxy-N-(4-(N-(5-methyl isoxazol-3-yl) sulfamoyl) phenyl)benzamide 3d had shown the highest binding energy against both the targets along with good antibacterial action. Graphical Abstract

Keywords: molecular docking; design molecular; docking study; substituted gallamide; heteroaryl substituted; gallamide derivatives

Journal Title: Natural Product Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.