Abstract Dipeptidyl-peptidase-4 is a multifunctional ectoenzyme, which is implicated with hyperglycemic pathophysiology. Therefore, dipeptidyl-peptidase-4 inhibitors could be used as an attractive therapeutic strategy in blood-glucose homeostasis to attenuate the pathophysiologies… Click to show full abstract
Abstract Dipeptidyl-peptidase-4 is a multifunctional ectoenzyme, which is implicated with hyperglycemic pathophysiology. Therefore, dipeptidyl-peptidase-4 inhibitors could be used as an attractive therapeutic strategy in blood-glucose homeostasis to attenuate the pathophysiologies of diabetes. A sulfated galactofucan characterized as [→1)-O-4-sulfonato-α-fucopyranosyl-(2→1)-O-2-sulfonato-α-fucopyranose-(3→] along with a branch of [→1)-6-O-methyl-β-galactopyranosyl-(4→] unit at the C-4 position of O-2-sulfonato-α-fucopyranose, isolated from the seaweed Padina tetrastromatica, exhibited prospective attenuation property against dipeptidyl-peptidase-4 (IC50 0.25 mg mL−1). The studied sulfated galactofucan exhibited potential inhibitory properties against carbolytic enzymes α-amylase (IC50 0.98 mg mL−1) and α-glucosidase (IC50 0.87 mg mL−1) in comparison with the standard antidiabetic agent acarbose, along with radical scavenging activities. The seaweed-originated galactofucan could be developed as a promising natural therapeutic lead against hyperglycemic disorder. GRAPHICAL ABSTRACT
               
Click one of the above tabs to view related content.