LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dislocation bending in GaN/step-graded (Al,Ga)N/AlN buffer layers on Si(111) investigated by STM and STEM

ABSTRACT The distribution and bending of dislocations in GaN/step-graded (Al,Ga)N/AlN buffer layers grown on Si(111) are investigated by cross-sectional scanning tunnelling microscopy (STM) and scanning transmission electron microscopy (STEM). We… Click to show full abstract

ABSTRACT The distribution and bending of dislocations in GaN/step-graded (Al,Ga)N/AlN buffer layers grown on Si(111) are investigated by cross-sectional scanning tunnelling microscopy (STM) and scanning transmission electron microscopy (STEM). We observe dislocations with -type Burgers vector intersecting the m-plane cleavage surface and having line directions bent off the [0001] growth direction toward non-polar directions. The spatial distribution of dislocations intersecting the m-plane cleavage surface indicates consecutive bending of dislocations due to strain at interfaces between subsequent lattice mismatched buffer layers and at doping junctions, reducing the density of threading dislocations at the (0001) growth front. No interface misfit dislocations, v-shaped defects, or loss of crystalline quality are observed, demonstrating the high performance of the step-graded (Al,Ga)N/AlN buffer layers on Si for relaxing the lattice constant without creating large defect concentrations.

Keywords: buffer layers; aln buffer; microscopy; step graded; graded aln; buffer

Journal Title: Philosophical Magazine
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.