LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The effect of hardening by annealing in ultrafine-grained Al–0.4Zr alloy: influence of Zr microadditives

Photo by _louisreed from unsplash

ABSTRACT Influence of annealing on the microstructure and mechanical properties has been studied for Al–Zr (0.4 wt.%) alloy with the ultrafine-grained (UFG) structure formed by high-pressure torsion (HPT) at room… Click to show full abstract

ABSTRACT Influence of annealing on the microstructure and mechanical properties has been studied for Al–Zr (0.4 wt.%) alloy with the ultrafine-grained (UFG) structure formed by high-pressure torsion (HPT) at room temperature. A drastic hardening effect by short-term annealing in the temperature range of 90–280°С was observed for the HPT-processed Al–Zr alloy. The effect of hardening by annealing for the HPT-processed Al–Zr alloy is compared with that for the HPT-processed commercial purity (CP) Al. It was shown that addition of 0.4 wt.% Zr in Al does not cause a significant impact on the magnitude of hardening by annealing up to 150°С, however it leads to a shift of its maximum to higher annealing temperatures and expansion of the thermal stability range of strength up to 280°С. The kinetics of hardening by annealing for CP Al and Al–Zr alloys in the UFG state has been studied for the first time. It was shown that in both materials the strength first increases linearly with the duration of annealing and then reaches saturation. The temperature dependence of the rate of hardening by annealing was analysed through an Arrhenius law, and apparent activation energy was extracted for both systems. The addition of Zr results in the reduction of the activation energy of annealing-induced hardening by ∼2 times. Possible physical mechanisms controlling the kinetics of hardening by annealing are discussed for the ultrafine-grained CP Al and Al–Zr alloy.

Keywords: hardening annealing; hpt; effect hardening; ultrafine grained; influence

Journal Title: Philosophical Magazine
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.