LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of severe-strain-induced defects on the mechanical response of two kinds of high-angle grain boundaries

Photo from wikipedia

ABSTRACT Grain boundaries of metallic materials subjected to severe plastic deformation exhibit significantly enhanced diffusivity and excess energy compared with their relaxed poly- or bi-crystalline counterparts even when the macroscopic… Click to show full abstract

ABSTRACT Grain boundaries of metallic materials subjected to severe plastic deformation exhibit significantly enhanced diffusivity and excess energy compared with their relaxed poly- or bi-crystalline counterparts even when the macroscopic degrees of freedom are the same in both types of grain boundaries. Boundaries of excess energy are/can be relaxed by annealing. As a first step in accounting for this experimentally observed high-energy state of general high-angle grain boundaries subjected to severe plastic deformation, a concept of localised basic shear units and the presence of localised extra free volume in these units situated in different locations in the grain boundaries, which was originally proposed to explain steady-state structural superplastic flow, is made use of. Using MD simulation, the mechanical response of these modified grain boundaries is compared with that of their relaxed state. The results are also compared with a case of a homogeneous distribution of extra free volume within the grain boundary. The localised shear units containing extra free volume introduced in the grain boundaries are found to alter their physical and mechanical features strongly, which, in turn, drastically affect, consistent with experimental results, the mechanical response of the heavily deformed material.

Keywords: angle grain; high angle; mechanical response; grain boundaries; grain

Journal Title: Philosophical Magazine
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.