LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Brassica juncea (L.) Czern. (Indian mustard): a putative plant species to facilitate the phytoremediation of mercury contaminated soils

Photo from wikipedia

Abstract A Phytoremediation experimental set up was established by spiking the soil with varying concentrations of mercury (Hg) (Treatment: T1:10; T2:50; T3:100; T4:500 and T5:1,000 mg Hg/kg soil). Hg removal ability… Click to show full abstract

Abstract A Phytoremediation experimental set up was established by spiking the soil with varying concentrations of mercury (Hg) (Treatment: T1:10; T2:50; T3:100; T4:500 and T5:1,000 mg Hg/kg soil). Hg removal ability of the Indian mustard plant was determined after 30, 60 and 90 days of exposure. Hg accumulation trend in second and third month of exposure was root > leaf > stem, while for the 1st month it was root > stem > leaf. The highest percentage of Hg accumulation (81%) and glutathione (14 mg/kg) was observed in the plants of T4 and T5 treatment, respectively at 90 days of exposure indicating a high level of Hg stress tolerance. At 90 days of exposure the chlorophyll a content in leaves grown on Hg-free soil (control soil) was 1.8, 2.4, 2.8, 3.6 and 4.4 fold higher than T1, T2, T3, T4 and T5 treatment respectively. With increase in exposure duration, translocation factor decreased whereas bioconcentration factor increased signifying Hg is mainly accumulated in the roots. The study suggests that Brassica juncea can withstand under high Hg contamination and can show great potential to phytostabilize Hg when grown under 100 mg/kg of soil Hg without showing any significant detrimental effect on the plant.

Keywords: indian mustard; plant; brassica juncea; soil; mercury

Journal Title: International Journal of Phytoremediation
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.