Sedum plumbizincicola has been widely employed to remove cadmium (Cd) and zinc (Zn) from contaminated soils and harvested biomass is used to recover valuable metals. While chopping and compacting are… Click to show full abstract
Sedum plumbizincicola has been widely employed to remove cadmium (Cd) and zinc (Zn) from contaminated soils and harvested biomass is used to recover valuable metals. While chopping and compacting are efficient methods to rapidly reduce the volume and moisture of fresh biomass, the resulting waste liquor containing metals needs treatment. Two types of contaminated soils were cropped with S. plumbizincicola and top-dressed with this liquor to study metals migration in soil profile and their uptake by plants. There were three treatments: planting and adding liquor (PL), planting without liquor (P) and adding liquor without planting (L). The results showed that Cd and Zn from liquor were mainly retained at top soil 0-10 cm under L treatment. Compared with L treatment, soil Cd and Zn under PL treatment decreased significantly in soil profile due to the extraction of S. plumbizincicola. Moreover, the amount of Cd and Zn extracted by plants was greater than that applied in soils. The metal removal rate by S. plumbizincicola in acid clay loam soil was higher than that in neutral sandy soil. To sum up, metal retaining in soil and uptake by S. plumbizincicola can be used to treat waste liquor from its fresh biomass. Novelty StatementRapid and efficient treatment of harvested fresh biomass is still a challenge although phytoextraction using hyperaccumulator Sedum plumbizincicola has been widely employed. Chopping and compacting fresh biomass are efficient methods for rapid dehydration, however, a large amount of waste liquor that contains of Cd and Zn is produced and needs treatment. In the present study, a simple and low-cost method was tested to dispose the liquor, i. e. irrigating it onto the surface of contaminated soils where grown S. plumbizincicola. It was found that Cd and Zn applied in soils from liquor were mainly retained at top 0-10 cm soil depth where S. plumbizincicola root system was widespread, and the amount of Cd and Zn extracted by plants was greater than that applied in soils. Therefore, it is technically feasible to dispose the waste liquor dewatering from fresh biomass of S. plumbizincicola in its phytoextraction process. This study is helpful for the rapid, efficient and low-cost treatment of harvested fresh biomass in the large-scale application of phytoremediation.
               
Click one of the above tabs to view related content.