Abstract Exotic plants could play an essential role in the restoration of heavy metal-contaminated soil. This study evaluated the tolerance of and extraction of cadmium (Cd) by ZCR (CR♀ ×… Click to show full abstract
Abstract Exotic plants could play an essential role in the restoration of heavy metal-contaminated soil. This study evaluated the tolerance of and extraction of cadmium (Cd) by ZCR (CR♀ × LT♂), hybrids of Xanthium strumarium (LT, exotic species) and X. sibiricum (CR, indigenous congener), and their parental species under different Cd treatments (0, 10, 40, and 80 mg·kg−1). The results showed that the hybrids had significantly improved tolerance to Cd. Under Cd stress, the biomass of ZCR increased by more than 50% on average compared with that of CR. Moreover, the hybrids showed a more remarkable ability to transport Cd from the root to the shoot. The Cd content of the shoots of ZCR increased by 128.33, 147.22, and 252.63% when treated with 10, 40, and 80 mg·kg−1 Cd, respectively. ZCR stored more than 70% of Cd in litter leaves, thereby reducing the toxic effects of Cd on photosynthesis and growth. The results showed that ZCR showed excellent Cd tolerance and enrichment in the presence of Cd. The hybrids of Xanthium strumarium and its native congener X. sibiricum may remediate soil Cd pollution. Novelty statement With the changing world economy and increasing human activities, exotic plants have become a global issue of common concern to the international community. This study describes new findings on using hybrids of the exotic plant of Xanthium strumarium and its native congener Xanthium sibiricum for the restoration of cadmium-contaminated soils. Under Cd stress, the hybrids' biomass, tolerance, and ability to accumulate Cd were significantly higher than that of X. sibiricum, indicating that hybrids gained useful heavy metal extraction traits from X. strumarium.
               
Click one of the above tabs to view related content.