Abstract Arsenic (As) is a major threat to the environment and human health due to its toxicity and carcinogenicity. Occurrence of alarming concentrations of As in water and soil leads… Click to show full abstract
Abstract Arsenic (As) is a major threat to the environment and human health due to its toxicity and carcinogenicity. Occurrence of alarming concentrations of As in water and soil leads to its bioaccumulation in crops which is a major health concern globally. Rice (Oryza sativa) is a staple food for a large population staying in As contaminated areas so, it is of utmost importance to reduce As levels in rice, especially grains. Amongst several strategies in practice, biotechnology may provide an effective option to reduce As accumulation in rice grains. Genetic engineering can be a viable approach to exploit potential genes playing roles in As metabolism pathway in plants. Besides, developing low As accumulating rice varieties through breeding is also an important area. Identifying genotypic variation in rice is a crucial step toward the development of a safe rice cultivar for growing in As-affected areas. Significant genotypic variation has been found in rice varieties for As accumulation in grains and that is attributable to differential expression of transporters, radial oxygen loss, and other regulators of As stress. This review provides recent updates on the research advances leading to transgenic and breeding approaches adopted to reduce As levels in rice, especially grains. NOVELTY STATEMENT Arsenic (As) contamination in water, soil, and crops is creating a difficult situation for the large population across the globe. Various efforts are being made to reduce As levels in rice as it is a staple crop. This review presents recent biotechnological advances toward the development of low As accumulating rice. The review shall be an important information resource for the readers on the topic.
               
Click one of the above tabs to view related content.