LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancement of Arthrospira sp. culturing for sulfate removal and mining wastewater bioremediation.

Photo from wikipedia

Sulfate content in mining wastewater can reach concentrations over 2,000 mg·L-1, which is considered as a pollutant of concern. In this article, two cyanobacteria species were cultured using highly sulfated wastewater… Click to show full abstract

Sulfate content in mining wastewater can reach concentrations over 2,000 mg·L-1, which is considered as a pollutant of concern. In this article, two cyanobacteria species were cultured using highly sulfated wastewater (3,000 mg·L-1) as the culture medium. This investigation aimed to analyze the sulfate bioremediation potential of microalgae while enhancing the uptaking of this pollutant through the design of a novel nutritional medium. The results obtained show the suitability of Arthrospira maxima as a bioremediation organism of sulfated wastewater. The appropriateness of this organism is based on its great growth performance when cultured in this residue, 2.16 times higher than the initial value. Moreover, the initially obtained sulfate reduction, 23.3%, was significantly enhanced to a final removal of 73% (2,247 mg·L-1). In addition, scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to evaluate sulfur crystallization. To the best of our knowledge, there are no previous works focused on microalgal sulfate removal that have reached such an uptaking rate. Accordingly, this study presents the highest performance on sulfate microalgal bioremediation published to date. Our findings suggest that A. maxima can be cultured for sulfated wastewater bioremediation while showing a removal yield that is theoretically sufficient for industrial applications.

Keywords: wastewater; wastewater bioremediation; mining wastewater; bioremediation; sulfate removal

Journal Title: International journal of phytoremediation
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.