LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of Bacteria biofertilizers using locally isolated rhizosphere populations and agricultural refuse and their impacts on growth of local test crops.

Photo from wikipedia

Biofertilizers are the preparations of live microorganisms added to the root, seed or soil to promote plant growth. In this study, Plant Growth Promoting Bacteria able to solubilize insoluble phosphate… Click to show full abstract

Biofertilizers are the preparations of live microorganisms added to the root, seed or soil to promote plant growth. In this study, Plant Growth Promoting Bacteria able to solubilize insoluble phosphate (P) and potassium (K) forms were isolated, characterized and identified. Two isolates that demonstrated excellent solubilization of potassium or phosphate from abundant and bio-available waste biomass (rice husk and cattle bone) were used to produce biofertilizers by solid-state fermentation. The biofertilizers were applied to grow three food security crops, Zea mays, Solanum lycopersicum, and Arachis hypogea, in a screenhouse, and monitored for growth impacts. Treatments A, B, and A + B biofertilizers caused a significant (p < 0.05) increase in plant dry weights. The highest microbial colonization was obtained from treatment A + B (for S. lycopersicum) with a microbial count (log 2.89 (108) cfu/g), whereas treatment with B (for A. hypogea) had the least microbial count (log 2.73 (108) cfu/g). Maximum values of experimental parameters: shoot height, leaf number, plant dry weight and leaf width were obtained with the combined application of both biofertilizers. P and K solubilizing PGPB have shown potential for use as biofertilizers in growing these key crops under the soil conditions and in the environment studied.

Keywords: using locally; growth; biofertilizers using; plant; bacteria biofertilizers; development bacteria

Journal Title: International journal of phytoremediation
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.