Remediation of organic dyes from wastewater in textile industries is a big challenge to decreasing water pollution. This study was aimed at the preparation of ZnO nanoparticles (NPs) and their… Click to show full abstract
Remediation of organic dyes from wastewater in textile industries is a big challenge to decreasing water pollution. This study was aimed at the preparation of ZnO nanoparticles (NPs) and their application as a photocatalyst for the degradation of methylene blue (MB), sunfix red (SR) and real textile wastewater (RTW) under both UV and visible irradiations. The ZnO NPs were synthesized with a green Thymus vulgaris leaf extract-supported approach following the calcination process. 50 mg L-1 MB and 50 mg L-1 SR dyes were completely photodegrade under UV irradiation after only 20 and 45 minutes, respectively, in the presence of 1.0 mg/mL ZnO NPs. When they are exposed to visible light, the degradation efficiency reached 91 and 75% within 60 and 120 min, respectively. Photocatalytic measurements of RTW depict that 95% (within 60 min under UV illumination) and 79% (within 90 min under visible illumination) were degraded, respectively. The enhanced photodegradation can be attributed to the narrowing of the bandgap of the ZnO NPs, high crystallinity and nearly hexagonal morphology with an average size of 20-30 nm. The present results show that ZnO NPs could potentially be applied for high-efficiency degradation of organic dyes and RTW under both UV and visible light irradiation.
               
Click one of the above tabs to view related content.