LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Relationship between the amount of black carbon particles deposited on the leaf surface and leaf surface traits in nine urban greening tree species.

Photo from wikipedia

To select urban greening tree species suitable for the purification of the atmosphere polluted by black carbon (BC) particles, it is necessary to clarify the determinants of the amount of… Click to show full abstract

To select urban greening tree species suitable for the purification of the atmosphere polluted by black carbon (BC) particles, it is necessary to clarify the determinants of the amount of BC particles deposited on the tree leaves. In the present study, we investigated the relationship between the amount of BC particles that were deposited from the atmosphere and firmly adhered to the leaf epicuticular wax, and leaf surface traits in seedlings of nine tree species grown for two years under natural conditions (Fuchu, Tokyo, Japan). There was a significant interspecific difference in the maximum amount of BC particles deposited on the leaf surface, and the order was as follows: Ilex rotunda > Cornus florida > Osmanthus fragrans > Cornus kousa > Quercus glauca ≒ Quercus myrsinifolia > Magnolia kobus ≒ Zelkova serrata ≒ Styrax japonicus. In the nine tree species, significant highly positive correlations were observed between the amount of BC particles deposited on the leaf surface, and the hydrophobicity of leaf epicuticular wax determined by its chemical composition. Therefore, we concluded that the hydrophobicity of leaf epicuticular wax is an important determinant of the amount of BC particles deposited on the leaf surface of urban greening tree species.

Keywords: particles deposited; deposited leaf; amount; tree species; surface; leaf surface

Journal Title: International journal of phytoremediation
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.