LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of pollution sources using artificial neural network (ANN) and multilevel breakthrough curve (BTC) characterization

Photo from wikipedia

Abstract A pollution source in groundwater may be active at some location for certain periods. There may be multiple potential sources responsible for observed contamination at observation wells. The contamination… Click to show full abstract

Abstract A pollution source in groundwater may be active at some location for certain periods. There may be multiple potential sources responsible for observed contamination at observation wells. The contamination witnessed in observation wells at different times establishes breakthrough curves (BTCs). These BTCs are usually employed for source identification. In this work, single and multistage artificial neural network (ANN) is employed to identify the potential pollution sources. Temporally varying potential pollution sources are generated using uniform random numbers. These source fluxes are further applied to the simulation of the pollution concentration at observation wells. BTC at an observation well is characterized by statistical parameters and data mining. Characterized BTCs are inputs and source fluxes are outputs of ANN models. Initial stage ANN models are developed at the specified observation well locations, using multilevel BTC characterization. These initial meta models are utilized for the development of intermediate models. Further, the intermediate models are employed for final stage identification. These multi-stage ANN models are found to perform comparatively better than single stage ANN models.

Keywords: observation; pollution sources; pollution; ann; identification; artificial neural

Journal Title: Environmental Forensics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.