LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Novel Coordinated Control Approach for Commutation Failure Mitigation in Hybrid Parallel-HVDC System with MMC-HVDC and LCC-HVDC

Photo by charlesdeluvio from unsplash

Abstract This paper proposes a novel coordinated control approach for the hybrid parallel-HVDC system that is composed of a line commutated converter-based high-voltage direct current (LCC-HVDC) link and a modular… Click to show full abstract

Abstract This paper proposes a novel coordinated control approach for the hybrid parallel-HVDC system that is composed of a line commutated converter-based high-voltage direct current (LCC-HVDC) link and a modular multi-level converter-based HVDC (MMC-HVDC) link in parallel. With the presented control approach, the reactive power of MMC-HVDC is regulated flexibly based on the extinction angle of LCC-HVDC to mitigate the commutation failure of LCC-HVDC and improve the fault recovery performances of the overall system during fault and post-fault periods. A hybrid parallel-HVDC system is developed in PSCAD/EMTDC to evaluate the effects of the proposed control approach. The transient performances of the hybrid parallel-HVDC, under single-phase and three-phase to ground faults at the inverter AC busbar are investigated. Commutation failure immunity index (CFII) and fault recovery time are used as measures to evaluate the effects of the proposed control approach. The results show that the proposed coordinated control approach can make the LCC-HVDC less susceptible to commutation failure in hybrid parallel-HVDC system and effectively improve the fault recovery performances of the overall system.

Keywords: control approach; system; hybrid parallel; hvdc

Journal Title: Electric Power Components and Systems
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.