LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modeling and analyses of thermo-elastic properties of radially grown carbon nanotubes-based woven fabric hybrid composite materials

Photo from wikipedia

ABSTRACT Carbon nanotubes (CNTs) may be useful due to their sound thermo-mechanical properties. The present work deals with the evaluation and analysis of elastic properties and coefficient of thermal expansions… Click to show full abstract

ABSTRACT Carbon nanotubes (CNTs) may be useful due to their sound thermo-mechanical properties. The present work deals with the evaluation and analysis of elastic properties and coefficient of thermal expansions (CTEs) of a CNTs-based 2D plane woven fabric composite material system where the CNTs are radially grown on the surface of the carbon fiber. Detailed constructional features of the proposed trans-scale composite material system is explained in detail. The mathematical modeling for the material properties of each constituent or building block of the hybrid composite is developed. The mathematical model for the thermo-elastic properties of yarns is also formulated based on strength of material method whereas the thermo-elastic properties of representative unit cell is based on the unit cell method. Various numerical results have been obtained by varying the CNTs content, carbon fiber contents, and temperatures. Effects of different geometrical parameters (such as yarn thickness, yarn width, and the ratio of gap length to yarn width of the yarn) on the elastic properties as well as the CTEs are also investigated.

Keywords: woven fabric; carbon; radially grown; thermo elastic; carbon nanotubes; elastic properties

Journal Title: Mechanics of Advanced Materials and Structures
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.