ABSTRACT In this paper, a new efficient hyperbolic shear deformation theory is presented for the static, free vibration, and buckling analysis of functionally graded plates by using the isogeometric analysis… Click to show full abstract
ABSTRACT In this paper, a new efficient hyperbolic shear deformation theory is presented for the static, free vibration, and buckling analysis of functionally graded plates by using the isogeometric analysis (IGA) approach. The IGA approach can easily formulate C1 continuous elements by the use of Non-Uniform Rational B-Spline (NURBS) functions. Higher-order shear deformation theory satisfies free shear stress conditions on the top and bottom surfaces of plate and so a shear correction factor is not needed. Equations are derived based on physical neutral surface position. FG plates with in-plane and through-thickness stiffness variations are studied and the obtained results are compared with each other. The results of the present hyperbolic model compared with those of other hyperbolic models, show the efficiency of the present model. Furthermore, the results show that the direction of material gradient and type of gradient have significant effects on the behavior of FG plates, especially in buckling analysis.
               
Click one of the above tabs to view related content.