LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Vibration analysis of carbon nanotubes based on cylindrical shell by inducting Winkler and Pasternak foundations

Photo by dawson2406 from unsplash

ABSTRACT In this article, vibration analysis of single-walled carbon nanotubes (SWCNTs) based on Love's thin shell theory has been investigated along with five sort of boundary conditions (S-S), (C-C), (C-F),… Click to show full abstract

ABSTRACT In this article, vibration analysis of single-walled carbon nanotubes (SWCNTs) based on Love's thin shell theory has been investigated along with five sort of boundary conditions (S-S), (C-C), (C-F), (C-Sl), and (F-S). Three different shapes such as Armchair, Zigzag, and Chiral are taken into account under the influence of Winkler and Pasternak foundations. The wave propagation approach is employed to formulate the eigenvalue problem. MATLAB software package in used to obtain the vibrational natural frequencies of SWCNTs. The axial modal dependence is measured by the complex exponential functions implicating the axial modal numbers.

Keywords: pasternak foundations; vibration analysis; carbon nanotubes; winkler pasternak

Journal Title: Mechanics of Advanced Materials and Structures
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.