LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Buckling loads of nano-beams in stress-driven nonlocal elasticity

Photo by elisa_ventur from unsplash

Abstract Size-dependent buckling of compressed Bernoulli-Euler nano-beams is investigated by stress-driven nonlocal continuum mechanics. The nonlocal elastic strain is obtained by convoluting the stress field with a suitable smoothing kernel.… Click to show full abstract

Abstract Size-dependent buckling of compressed Bernoulli-Euler nano-beams is investigated by stress-driven nonlocal continuum mechanics. The nonlocal elastic strain is obtained by convoluting the stress field with a suitable smoothing kernel. Incremental equilibrium equations are established by a standard perturbation technique. Higher-order constitutive boundary conditions are naturally inferred by the stress-driven nonlocal integral convolution, equipped with the special bi-exponential kernel. Buckling loads of compressed nano-beams, with kinematic boundary constraints of applicative interest, are numerically calculated and compared with those obtained by the theory of strain gradient elasticity.

Keywords: elasticity; driven nonlocal; stress driven; nano beams; buckling loads; mechanics

Journal Title: Mechanics of Advanced Materials and Structures
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.